
princeton univ. F’25 cos 521: Advanced Algorithm Design

Lecture 20: Graph Cut Sparsifiers

Lecturer: Huacheng Yu

1 Cut Sparsifiers

Definition 1. Let G = (V,E) be an unweighted undirected graph. Then, (possibly weighted)
graph G′ = (V,E′) is an ε-cut sparsifier of G if it preserves approximately all cuts in G.
That is, for all S ⊆ V ,

|EG′(S, S)| ∈ (1± ε)|EG(S, S)|

Of course, G is a cut sparsifier of itself. We are looking for a sparse G′ that has way
less edges than G. In fact, you can show you need to have a weighted sparsifier in order
to get any nontrivial sparsification. Because of cut-flow correspondence, we can get an
approximate max-flow by running a max-flow algorithm on the cut sparsifier. Thus, if we
could find a cut sparsifiers, this will speed up our algorithms.

Theorem 1. For any unweighted G, there is a cut sparsifier G′ with Õ
(
n
ε2

)
. Moreover, G′

is a weighted subgraph of G.

There are very efficient (near-linear-time) algorithms, but the algorithm we present here
will be just polynomial time (so no max-flow speedups yet). The main idea is that we
will sample some of the edges at random to keep, and discard the rest. However, uniform
sampling will not achieve this goal. For example, consider the graph in Figure 1: made up
of two dense subgraphs connected by a single edge.

Figure 1: An adversarial case for uniform sampling.

Now, if you remove the “bridge,” the cut value between the dense parts will drop from
1 to 0, and so will not be an ε-approximation to the original cuts. Thus, this bridge is
somehow more important to preserving cuts in the graph, so we should sample it with
higher probability!

1

2

If there’s a small cut in the graph, we will remove the cut (like in the above bad case),
then recurse on the remaining part. If this graph has no small cut, then this problem is
alleviated and we can just uniformly sample. Here is the exact details.
SPARSIFY(G)

1. If G has a cut (S, S) of size ≤ c
ε2

log3 n

(a) We recursively compute sparsifiers G′
S for G[S] and G′

S
for G[S].

(b) We return G′ := G′
S ∪G′

S
∪ EG(S, S)

2. Otherwise:

(a) Sample every edges of G with probability 1/2, obtain H.

(b) Recursively compute a sparsifier H ′ for H.

(c) Return G′ = H ′, but with all the edge weights multiplied by 2.

Theorem 2. G′ returned by SPARSIFY(G) has O
(
n
ε2

log3 n
)
edges.

Proof. The edges we explicitly add to G′ are the small cuts of size O
(

1
ε2

log3 n
)
. By defi-

nition of a cut, every time we add such a cut, the graph is partitioned into two nonempty
parts and we recurse. However, the graph has n vertices, so this can only happen at most
n− 1 times, giving the required count.

Theorem 3. G′ returned by SPARSIFY(G) is a ε-sparsifier with probability 1−O
(
n−2

)
.

Proof. We will argue each step of the process incurs a small error to the cut size.

1. Suppose G has a small cut (S, S) (i.e. case 1). Consider any cut (T, T). Then, we can
write

|E(T, T)| = |E(S ∩ T, S ∩ T)|+ |E(S ∩ T, S ∩ T)|
+ |E(S ∩ T, S ∩ T)|+ |E(S ∩ T, S ∩ T)|

Note that (S ∩ T, S ∩ T) is a cut in G[S] and (S ∩ T, S ∩ T) is a cut in G[S]. Thus,
by recursion, we compute sparsifiers G′

S and G′
S
, which approximate G[S] and G[S].

Therefore, |EG′
S
(S∩T, S∩T)| ∈ (1±ε)|EG[S](S∩T, S∩T)| and |EG′

S
(S∩T, S∩T)| ∈

(1± ε)|EG[S](S ∩ T, S ∩ T)|.

For the other two terms, note that E(S ∩ T, S ∩ T), E(S ∩ T, S ∩ T) ⊆ E(S, S). Since
E(S, S) is added to the sparsifier at the end, Furthermore, |EG′(S ∩ T, S ∩ T)| =
|EG(S ∩ T, S ∩ T)| and likewise for the other set of edges. Thus, the whole sum
|E(T, T)| is preserved to a (1± ε) factor.

2. Suppose we are in case 2. Then we sample every edge with probability 1/2 assuming
the min-cut size C ≥ c

ε2
log3 n. Consider a min-cut (S, S). By a Chernoff bound,

Pr

[∣∣∣∣EH

(
S, S

)
| /∈ 1

2
(1± η)|EG(S, S)

∣∣∣∣] ≤ exp(−Ω(η2|EG(S, S)|))

≤ exp
(
−Ω

(
η2

c

ε2
log3 n

))

3

Let η = ε
logn . Then, this probability is at most

exp

(
−Ω

((
ε

log n

)2 c

ε2
log3 n

))
≤ n−Ω(c)

But, by cut counting (which we proved in HW 1), there are ≤ n2B cuts of size at most
BC. Thus, for a B-approximate min-cut, the same calculation yields that the cut is
does not retain close to 1/2 of its edges with probability at most

exp
(
−Ω

(
η2

c

ε2
log3B

))
≤ n−Ω(cB)

Then, by a union bound, if c ≫ 2, then by setting B = 1, 2, 4, . . . , 2i and considering
all cuts of size in (2iC, 2i+1C]:

Pr[∃ a cut whose size is not preserved to (1± η) factor] ≤
∞∑
i=0

n2(2i)n−Ω(c(2i)) ≤ 1

n2

Thus, by choice of η, each sampling step preserves all cuts within
(
1± ε

logn

)
error

with high probability. Since there can only be log n sampling rounds, the total error
is within (1± ε).

2 Spectral Sparsifiers

Definition 2. Consider graph G = (V,E) with n = |V |. Let e = (i, j) be an edge. Then
we define the edge-Laplacian Le ∈ Rn×n.

Le =



i . . . j

i 1 0 . . . 0 −1
0 0 . . . 0 0

... 0
...

. . .
...

...
0 0 . . . 0 0

j −1 0 . . . 0 1


Then, the Laplacian of G, LG =

∑
e∈G Le. In other words

(LG)ij =


deg(i) i = j

−1 (i, j) ∈ E

0 otherwise

so, we can write LG = D −A, where D is a diagonal matrix of the degrees of each vertex.

4

Let x ∈ {0, 1}n be the indicator vector of a cut S ⊆ V . Then

x⊤LGx = x⊤
∑
e∈G

Lex =
∑
e∈G

x⊤Lex =
∑

e=(i,j)∈G

(x2i + x2j − 2xixj) =
∑

e=(i,j)∈G

(xi − xj)
2

But notice the thing being summed over is just the indicator that for an edge xi ̸= xj , i.e.
edge is cut. Thus,

x⊤LGx = |EG(S, S)|

Hence, if we want to preserve all cuts, it’s enough to preserve this quadratic form for all
0− 1 vectors.

Definition 3. A graph G′ with edge weights we is an ε-cut sparsifier of G if, defining the
weighted Laplacian LG′ =

∑
e∈G′ weLe and for all x ∈ {0, 1}n,

x⊤LG′x ∈ (1± ε)x⊤LGx

Definition 4. A graph G′ is a ε-spectral sparsifier of G if the above condition holds for all
x ∈ Rn.

There’s another equivalent condition. Let y = L
1/2
G x (you can show the Laplacian is

PSD, so it has a square root), so

∀x ∈ Rn, x⊤LG′x ∈ (1± ε)x⊤LGx ⇔ ∀y ∈ Rn, y⊤L
−1/2
G LG′L

−1/2
G y ∈ (1± ε)∥y∥22

⇔

∥∥∥∥∥∑
e∈G′

weL
−1/2
G LeL

−1/2
G − I

∥∥∥∥∥
op

≤ ε

Note that if we have G = G′, then
∑

e∈G L
−1/2
G LeL

−1/2
G = I. Thus, you can think of it as

we have a bunch of terms that sum to I, then we take a small subset of them and reweight
them to get something close to I. Then, it turns out a special type of nonuniform sampling
works.

SPECTRAL-SPARSIFY(G)

1. For every edge e, define pe = ∥L−1/2
G LeL

−1/2
G ∥op.

2. For all edges, sample e with probability pe. If sampled, set we =
1
pe
.

3. Repeat Õ
(

1
ε2

)
times and add up the weights.

To prove that this preserves the largest eigenvalue of the sum (which is also the average
of the sparsified sum), we can use a tool from random matrix theory called the matrix
Chernoff bound. It directly gives the result.

To explain this strange quantity, there is a physical intuition. If you view the graph as a
set of resistors of 1Ω at each edge, then p(i,j) is the effective resistance between i and j. pe
is also the probability that a uniformly random spanning tree T contains the edge e. The
second interpretation implies

∑
e pe = n − 1, so we only get expected n edges from each

stage.

	Cut Sparsifiers
	Spectral Sparsifiers

